УДК 517.983:519.2:519.6

Модифицированная проекционная схема метода наименьших квадратов для моделирования концентрации неосновных носителей заряда в полупроводниковых материалах

Е.В. Серегина, М.А. Степович, А.М. Макаренков

Рассмотрена модифицированная проекционная схема метода наименьших квадратов для моделирования концентрации неосновных носителей заряда, генерированных электронным и световым пучком в полупроводниковом материале.

PACS: 72.10.Bg;72.20.Jv;72.40.+w;78.56.-a.

Ключевые слова: полупроводники, проекционный метод наименьших квадратов, концентрация неосновных носителей заряда.

Введение

В данной работе предложен модифицированный проекционный метод наименьших квадратов для моделирования явления диффузии неосновных носителей заряда (HH3) в полупроводниковых материалах. Ранее такая задача решалась для случая генерации HH3 электронным пучком применительно к модели независимых источников [1, 2] и модели коллективного движения HH3 с использованием проекционного метода [3, 4] без его строгого обоснования и рассмотрения вопроса вычислительной устойчивости алгоритма.

Настоящая работа продолжает такие исследования и ставит задачу дать порядковую оценку и получить условие вычислительной устойчивости предложенной модифицированной проекционной схемы метода наименьших квадратов для расчета концентрации ННЗ, генерированных различными внешними энергетическими воздействиями в полупроводнике. В расчетах использовалась модель коллективного движения носителей заряда [5], согласно которой на диффузию генерированных внешним энергетическим воздействием неравновесных ННЗ из любого микрообъема полупро-

Серегина Елена Владимировна, преподаватель.

Степович Михаил Адольфович, зав. кафедрой, профессор. Калужский государственный университет им. К.Э. Циолковского

Россия, 248023, г. Калуга, ул. Степана Разина, 26. Тел.: 8-909-2501433. E-mail: evfs@yandex.ru

Макаренков Александр Михайлович, доцент.

Калужский филиал Московского государственного технического университета им. Н.Э. Баумана.

Россия, 248600, г. Калуга, ул. Баженова, 2.

Тел.: 8-985-4407309. E-mail: amm2005@rambler.ru

Статья поступила в редакцию 13 февраля 2013 г.

© Серегина Е.В., Степович М.А., Макаренков А.М., 2013

водникового материала оказывают влияние другие электроны (или дырки) из других микрообластей материала. Тогда для одномерной диффузии в полупроводнике концентрация неравновесных ННЗ $\Delta p(z)$ находится как решение дифференциального уравнения

$$D\frac{d^2\Delta p(z)}{dz^2} - \frac{\Delta p(z)}{\tau} = -\rho(z)$$
(1)

с граничными условиями

$$\left. D \frac{d\Delta p(z)}{dz} \right|_{z=0} = v_s \Delta p(0), \, \Delta p(\infty) = 0.$$
 (2)

Здесь D, τ и v_s – электрофизические параметры полупроводниковой мишени, а именно, коэффициент диффузии, время жизни и скорость поверхностной рекомбинации ННЗ, соответственно; $\rho(z)$ – число неосновных носителей заряда, генерируемых вследствие внешнего воздействия в единицу времени в тонком слое мишени на глубине *z*. Значения $\rho(z)$ могут быть определены из соотношения для плотности энергии $\rho^*(z)$, выделяемой в этом слое мишени в единицу времени (делением $\rho^*(z)$ на энергию образования электронно-дырочной пары). Для широкого электронного пучка справедлива полуэмпирическая формула работы [6]:

$$\rho^{*}(z) = \frac{1,085(1-\eta)P_{0}}{\sqrt{\pi}(1-\eta+\eta z_{ss} / z_{ms})} \times \\ \times \left\{ \exp\left[-\left(\frac{z-z_{ms}}{z_{ms}}\right)^{2}\right] + \frac{\eta}{1-\eta} \exp\left[-\left(\frac{z-z_{ss}}{z_{ss}}\right)^{2}\right] \right\}.$$
(3).

Здесь *z*_{ms} – глубина максимальных потерь энергии первичными электронами, испытавшими малоугловое рассеяние; *z*_{ss} – глубина максимальных потерь энергии обратно рассеянными электронами; η – коэффициент обратного рас-

сеяния электронов зонда, $\eta = 0,024 e Z^{1.67} / A$, а *Z* и *A* – порядковый номер и атомный вес вещества, соответственно. Для пучка света скорость генерации электронно-дырочных пар равна

$$\beta \alpha_1 I_0 \exp(-\alpha_1 z)$$

где I_0 – интенсивность света на входе в образец, α_1 – коэффициент поглощения, β – внутренний квантовый выход [7].

Постановка задачи

Для решения задачи (1), (2) мы предлагаем использовать модифицированный проекционный метод наименьших квадратов, который не только позволяет решить поставленную задачу, но и построить эффективный вычислительный алгоритм. К настоящему времени разработаны эффективные вычислительные алгоритмы решения некоторых задач анализа, основанные на использовании данного подхода. Однако авторы большинства работ делают акцент на простоте вычислительной схемы, в то время как вопросам обоснования применяемых методов уделяется недостаточное внимание. В связи с этим в настоящей работе приводятся теоремы, утверждающие сходимость вычислительной схемы, построенной на основе проекционного метода. Заметим, что применение конечно-разностных методов решения рассматриваемой задачи затруднительно, поскольку одно из граничных условий (2) задано на бесконечности.

Ранее в работе [8] было получено решение стационарного уравнения диффузии ННЗ проекционным методом. Приближенное решение было найдено в аналитическом виде с использованием сравнительно небольшого числа членов функционального ряда (m = 15). Настоящая работа посвящена развитию и обоснованию приближенно-аналитического метода решения рассматриваемой задачи. Кроме того, в работе проведен сравнительный анализ результатов моделирования явления диффузии ННЗ, генерированных световым пучком в германиикремнии (Ge_{0.3}Si_{0.7}) с экспериментальной кривой фототока, измеренной методом NPC [9] по глубине полупроводника. Для реализации проекционного метода был выбран базис из модифицированных функций Лагерра с параметром, ускоряющим сходимость ряда [10].

Проекционная аппроксимация исходной модели, основанная на применении метода наименьших квадратов

Рассмотрим проекционную аппроксимацию задачи (1), (2). Введем ортонормированный базис из модифицированных функций Лагерра $\phi_i(z) = \exp(-\gamma z/2)L_i(\gamma z; \alpha)$ в функциональ-

ном пространстве $L_2[0, \infty)$, которые определяются через многочлены Чебышева-Лагерра $L_i(\gamma z; \alpha)$ [10], i = 0, 1, 2, Здесь параметры γ и α используются для оптимизации вычислительной схемы. Тогда каждую функцию от переменной z, входящую в систему уравнений (1), (2), аппроксимируем частичной суммой порядка m ее ряда Фурье по системе модифицированных функций Лагерра, а затем последовательно применим к каждому уравнению системы операторы проектирования Q^m на подпространство с базисом из m первых модифицированных функций Лагерра.

Перейдем от системы уравнений (1), (2) к приближенной системе уравнений:

$$\begin{cases} D\tau Q^{m} \left(\frac{d}{dz} Q^{m} \left(\frac{d\Delta p^{m}(z)}{dz} \right) \right) - \Delta p^{m}(z) = \\ = -\tau \rho^{m}(z), \qquad (4) \\ Q^{m} \left(\frac{d\Delta p^{m}(z)}{dz} \right) \bigg|_{z=0} - D^{-1} \nu_{s} \Delta p^{m}(0) = 0, \end{cases}$$

и вместо задачи (4) рассмотрим функционал:

$$J\left(\Delta p^{m}\left(z\right)\right) = \left\|\tilde{L}_{1}^{(\Delta p)}\left(\Delta p^{m}\left(z\right)\right) + \tau \rho^{m}\left(z\right)\right\|_{L_{2}}^{2} + \left\|\tilde{L}_{2}^{(\Delta p)}\left(\Delta p^{m}\left(z\right)\right)\right\|_{z=0}^{2}\right\|_{L_{2}}^{2},$$

где $\tilde{L}_{1}^{(\Delta p)}$ и $\tilde{L}_{2}^{(\Delta p)}$ – операторы, стоящие в левых частях уравнений системы (4). Приближенное решение $\Delta p^{m}(z)$ ищется из требования, чтобы оно доставляло минимум функционалу $J(\Delta p^{m}(z))$.

Обозначим через C_m^p и C_m^ρ столбцы из коэффициентов разложений неизвестной функции $\Delta p(z)$ и известной функции $\rho(z)$ по базису $\varphi_1(z)$ соответственно. Далее введем матрицу дифференцирования D^m в базисе $\varphi_1(z)$ и обозначим через $\varphi^m(z)$ столбец из *m* первых модифицированных функций Лагерра по переменной *z*. С другой стороны, в силу ортогональности функций Лагерра на полуоси $[0, \infty)$, функционал $J(\Delta p^m(z))$ можно представить в виде:

$$J(\Delta p^{m}(z)) = J(C^{p}) = (A_{p}C^{p} - G)^{T}(A_{p}C^{p} - G)$$

и перейти к алгебраической векторно-матричной системе уравнений

$$A_p C^p = G, (5)$$

где A_p – матрица переопределенной системы (5), которая имеет вид

$$A_{p(m+1)\times m} = \begin{bmatrix} D\tau D_m^2 - E \\ \left(\varphi^m(0)\right)^T D_m - D^{-1} v_s \left(\varphi^m(0)\right)^T \end{bmatrix}.$$

Столбец, стоящий в правой части системы уравнений (5), определяется как:

$$G_{(m+1)\times 1} = \begin{bmatrix} -\tau C_m^{\rho} & 0 \end{bmatrix}^T$$

Разложение функции $\rho(z)$ по базису из *m* первых модифицированных функций Лагерра выглядит так:

$$\rho(z) \approx \rho^m(z) = \left(\varphi^m(z)\right)^T C_m^{\rho}, \quad z \in [0,\infty).$$
(6)

Далее найдем столбец C^p , который минимизирует сумму квадратов невязок всех уравнений, входящих систему (5):

$$J(C^{p}) = (A_{p}C^{p} - G)^{T}(A_{p}C^{p} - G) \rightarrow \inf G$$

т.е. решим ее, используя метод наименьших квадратов (МНК). Тогда нормальное псевдорешение переопределенной системы уравнений (5) можно найти с помощью псевдообратной матрицы [11]

$$C^{p^{+}} = \left(A_{p}^{T} A_{p}\right)^{-1} A_{p}^{T} G.$$
 (7)

Получив нормальное псевдорешение C^{p^+} , можно восстановить приближенное решение исходной задачи (1), (2) по формуле:

$$\Delta p(z) \approx \Delta p^{m}(z) = \left(\varphi^{m}(z)\right)^{T} C^{p^{+}}, z \in [0,\infty).$$
(8)

Обоснование метода

Опираясь на результаты работы В.А. Абилова [12] и В.К. Лащенова [13], можно установить оценку погрешности для функционала $J(C_m^{p^*})$ и получить условие о вычислительной устойчивости предложенного алгоритма. Мы не будем останавливаться на этом подробно, а приведем без доказательства следующие результаты.

Если погрешности в исходных данных и погрешности вычислений отсутствуют, а учитываются лишь погрешности аппроксимаций, тогда имеет место следующий результат.

Пусть функция $\rho(z)$ имеет непрерывные производные до порядка *r*. Тогда последовательность $\{C_m^{p^*}\}$ будет минимизирующей для функционала $J(C^p)$ и справедлива оценка:

$$J\left(C_{m}^{p^{+}}\right) \leq \begin{cases} C\left(r;\alpha;\gamma\right)m^{-r+\alpha+3/2}\omega^{2}\left(m^{-1}\right),\\ \alpha \geq 3/2, \ r > \alpha+1/2,\\\\ C\left(r;\alpha;\gamma\right)m^{-r+3}\omega^{2}\left(m^{-1}\right),\\ -1/2 < \alpha < 3/2, \ r \geq 2, \ m \to \infty. \end{cases}$$

Здесь $\omega(t)$ – заданный модуль непрерывности. Важнейшей характеристикой алгоритмов решения приближенных уравнений является их вычислительная устойчивость (см., например [14]). Справедливо следующее утверждение.

Предположим, что при увеличении числа m погрешность σ_m в вычислении коэффициентов Фурье-Лагерра функции $\rho(z)$ можно неограниченно уменьшать так, что

$$\lim_{m\to\infty}\sigma_m m^{(\alpha+1)/2} = 0$$

Тогда, если для $m \ge 4$ минимизации возмущенного функционала $\tilde{J}(C^p)$, построенного с помощью проектирования на подпространство с базисом из первых m модифицированных функций Лагерра, в котором точное разложение $\rho^m(z)$ заменено на приближенное $\tilde{\rho}^m(z)$, то последовательность $\tilde{C}_m^{p^+}$ будет минимизирующей и для функционала $J(C^p)$.

Таким образом, применяя изложенную схему, получать сколь угодно малые значения функционала $J(C^p)$ можно лишь в случае, когда увеличение размерности аппроксимирующего подпространства сопровождается повышением точности вычисления коэффициентов Фурье по модифицированным функциям Лагерра функции $\rho(z)$, т.е. величина σ должна зависеть от m: $\sigma = \sigma_m$, и убывать к нулю при $m \to \infty$.

Результаты расчетов и их обсуждение

Ниже представлены результатов расчетов, проведенных для параметров мишени, характерных для монокристаллического кремния Si и германия–кремния Ge_{0,3}Si_{0,7} с помощью математического пакета Matlab (MathWorks, Inc.). Приемлемое для проведения практических расчетов приближение функции $\rho(z)$ для электронного пучка с энергией $E_0 = 20$ кэВ и для светового пучка с коэффициентами поглощения $\alpha_1 = 0,1$ нм⁻¹ было получено уже для 13 членов ряда Фурье по модифицированным функциям Лагерра:

$$\Delta(\rho, \rho^{m}) = \frac{\|\rho(z) - \rho^{m}(z)\|_{L_{2}[0,\infty)}}{\|\rho(z)\|_{L_{2}[0,\infty)}} \times 100\% < 0.164\%$$

Результаты выполненных расчетов приведены на рис. 1. Видно, что кривые точных и приближенных (формула (6)) представлений функции ρ(z) при использовании в разложении 13 членов ряда по базису из функций Лагерра в выбранном масштабе практически совпадают. <Рис. 1>

Рис. 1. Функция распределения плотности потерь энергии электронным пучком в кремнии (а) и скорость генерации световым пучком электронно-дырочных пар в германии-кремнии $Ge_{0,3}Si_{0,7}$ (б) (график отмечен крестиками) и результаты их аппроксимаций 13-м приближением модифицированными функциями Лагерра (непрерывная линия). Значения модифицирующих параметров равны: $\gamma = 5$, $\alpha = 0$ (а) и $\gamma = 0,2$, $\alpha = 0$ (б). В выбранном масштабе кривые $\rho(z)$, построенные по аналитическим выражениям, совпадают с кривыми приближений.

Оценка относительной погрешности между 12-м и 13-м приближением решения дифференциального уравнения (1), (2) следующая:

$$\Delta(\delta p^{12}, \delta p^{13}) \leq 0.0628\%$$

Таким образом, проекционный метод позволяет получить приближенное решение с использованием небольшого числа членов разложения (m = 13) по базису из модифицированных функций Лагерра для достижения приемлемой точности.

Результаты моделирования явления диффузии неосновных носителей заряда (ННЗ), генерированных электронным и световым пучком в полупроводниковых материалах для выбранных значений электрофизических параметров полупроводников представлены на рис. 1 и рис. 2. На рис. 1 изображено распределение плотности потерь энергии электронным пучком в кремнии и скорость генерации световым пучком электронно-дырочных пар в германиикремнии (Ge_{0.3}Si_{0.7}) (график отмечен крестиками) и результаты аппроксимации для этих мишеней с использованием 13 функций Лагерра (формула (6)). На рис. 2 изображены концентрации ННЗ по глубине, генерированных электронным пучком в кремнии и световым пучком в германии-кремнии Ge₀₃Si₀₇, вычисленные в 13-м приближении по модифицированным функциям Лагерра (тонкая непрерывная кривая), а также сигнал фототока I(z), измеренный методом NPC в германии-кремнии Ge_{0.3}Si_{0.7} при комнатной температуре [9] для характер-

Рис. 2. Концентрация ННЗ, генерированных электронным пучком в кремнии, вычисленная в 13-м приближении по модифицированным функциям Лагерра (а); концентрация ННЗ, генерированных световым пучком в германии-кремнии Ge_{0,3}Si_{0,7}, вычисленная в 13-м приближении (б) (тонкая непрерывная линия) и сигнал фототока, измеренный методом NPC в германии-кремнии Ge_{0,3}Si_{0,7} [9] (экспериментальные точки).

ных параметров τ , *D* и v_s , которые зависят от качества материалов: а) $\tau = 10^{-8}$ с, $D = 10^8$ мкм²/с и $v_s = 10^{10}$ мкм/с; б) $\tau = 1,1 \times 10^{-9}$ с, $D = 10^{12}$ мкм²/с и $v_s = 2 \times 10^7$ мкм/с.

Заключение

Разработан приближенно-аналитический метод решения задачи диффузии ННЗ, генерированных в полупроводниковых материалах электронными и световыми пучками, позволяющий проводить практические расчеты информативных сигналов, обусловленных диффузией ННЗ в полупроводниках. Для модели коллективного движения ННЗ получена порядковая оценка и условие вычислительной устойчивости предложенного проекционного метода.

Литература

1. Серегина Е.В., Макаренков А.М., Степович М.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 6. С. 80.

2. Серегина Е.В., Макаренков А.М., Степович М.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2009. № 10. С. 75.

3. *Серегина Е.В., Макаренков А.М., Степович М.А.* // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011. № 8. С. 41.

4. Серегина Е.В., Макаренков А.М., Степович М.А. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2012. № 4. С. 47.

5. *Kyser D.F., Wittry D.B.* // Proc. IEEE. 1967. V. 55. No. 3. P. 733.

6. *Михеев Н.Н., Степович М.А.* // Заводская лаборатория. 1996. Т. 62. № 4. С. 20. 7. Воробьев Л.Е., Данилов С.Н., Зегря Г.Г. и др. Фотоэлектрические явления в полупроводниках и размерно-квантованных структурах. – Санкт-Петербург: Наука. 2001.

8. Петров В.И., Самохвалов А.А., Степович М.А. и др. // Изв. РАН. Сер. физ. 2002. Т. 66. № 9. С. 1310.

9. J.W.P. Hsu // Materials Science and Engineering. 2001. No. 33. P. 1.

10. *Суетин П.К.* Классические ортогональные многочлены. – М.: Физматлит. 2007.

11. *Лапин С.В., Егупов Н.Д.* Теория матричных операторов и ее приложение к задачам автоматического управления. – М.: МГТУ им. Н.Э. Баумана. 1997.

12. *Абилов В.А. //* Матем. зам. 1995. Т. 57. № 32. С. 163.

13. *Лащенов В.К.* // Изв. вузов. Математика. 1981. № 1(224). С. 44.

14. *Гавурин М.К.* Лекции по методам вычислений. – М.: Наука. 1971.

The modified projective circuit of a method of the least squares for modelling concentration of minority charge carriers in semiconductor materials

E.V. Seregina¹, M.A. Stepovich¹, and A.M. Makarenkov²

¹ Tsiolkovsky Kaluga State University, Kaluga, 248023, Russia E-mail: evfs@yandex.ru

² Bauman Moscow State Technical University, Kaluga Branch Kaluga, 248000, Russia E-mail: amm2005@rambler.ru

The modified projective circuit of a method of the least squares for modelling concentration of minority charge carriers generated by an electronic and light beam in a semiconductor material is considered.

PACS: 72.10.Bg;72.20.Jv;72.40.+w;78.56.-a. *Keywords:* semiconductors, projective method of the least squares, concentration of minority charge carriers.

Bibliography - 14 references

Received February 13, 2013