УДК 533.924:51-73

Модель взаимодействия плазмы индукционного высокочастотного разряда пониженного давления с наночастицами серебра

И.Ш. Абдуллин, В.С. Желтухин, И.А. Бородаев, А.Ю. Шемахин

Построены физическая и математическая модели процесса взаимодействия нано-частиц серебра с потоком плазмы высокочастотного разряда. Описана динамика измене-ния заряда и радиуса наночастицы. Установлено, что наночастицы Ag в индукционной BЧ-плазме пониженного давления распыляются полностью, и на поверхность образца поступает атомарно-ионный поток.

PACS: 52.65.Yy, 52.80.Pi

Ключевые слова: математическое моделирование, наночастицы, взаимодействие с плаз-мой, распыление, высокочастотный разряд, пониженное давление.

Введение

Высокочастотная (ВЧ) плазма пониженного давления эффективно используется в различных технологических процессах, в т.ч. для нанесения нанопокрытия из серебра на материалы [1, 2]. Тем не менее, в настоящее время процесс распыления наночастиц в потоке частично ионизованного газа исследован недостаточно. В связи с этим целью данной работы была разработка физической и математической моделей взаимодействия наночастиц серебра с потоком плазмы индукционного ВЧ-разряда пониженного давления.

Исходные данные

Ранее проведенные экспериментальные исследования индукционных ВЧ-разрядов в аргоне показали, что при давлениях P = 13,3 - 133 Па, частоте электромаг¬нит¬ного поля f = 1,76 МГц, мощности разряда $P_d = 0,5-4$ кВт, расходе газа G < 0,2 г · с⁻¹ плазма обладает следующими харак-

Абдуллин Ильдар Шаукатович, зав. кафедрой. Казанский национальный исследовательский технологический университет. Россия, 420068, г. Казань, ул. К. Маркса, 15. Тел.: +7 843 231 4109. E-mail: abdullin_i@kstu.ru Желтухин Виктор Семенович, зав. кафедрой. Бородаев Игорь Андреевич, студент. Шемахин Александр Юрьевич, ассистент. Казанский (Приволжский) федеральный университет. Россия, 420008, г. Казань, ул. Кремлевская, 18. Тел.: +7 843 233 7800. E-mail: vzheltukhin@gmail.com

Статья поступила в редакцию 6 апреля 2013 г.

теристиками: степень ионизации 10⁻⁴–10⁻⁷, концентрация электронов $n_e = 10^{15}-10^{19}$ м⁻³, электронная температура $T_e = 1-4$ эВ, температура атомов и ионов в плазменном сгустке $T_a = (3-4) \cdot 10^3$ К, а в плазменной струе $T_a = 350-700$ К [3]. При указанных параметрах средняя длина свободного пробега электронов составляет ~ 10⁻³ м, ионов ~ 10⁻⁴ м, дебаевский радиус $\lambda_D = 10^{-6}-10^{-5}$ м.

Наночастицы серебра вводятся в плазму из барботера, в котором находится коллоидный раствор серебра. При пропускании через барботер плазмообразующего газа наночастицы увлекаются газовым потоком.

Согласно данным поставщика, в коллоидном растворе содержатся наночастицы Ag⁺ размером 6–9 нм, их концентрация в растворе не превышает 10⁵ м⁻³. Концентрацию наночастиц во входящем потоке плазмообразующего газа оценить чрезвычайно сложно, можно лишь предположить, что она на несколько порядков меньше концентрации в растворе и концентрации заряженных частиц в плазме, а также, что в потоке газа присутствуют как положительно заряженные частицы, так и нейтральные.

При указанных выше параметрах плазмы в объеме с линейным размером 10⁻⁶–10⁻⁵ м в среднем содержится по одному электрону или иону. Поэтому можно считать, что в дебаевской сфере содержится не более одной наночастицы серебра. Поэтому в дальнейшем рассмотрим процесс активации одной наночастицы без учета влияния на нее других наночастиц [3].

[©] Абдуллин И.Ш., Желтухин В.С., Бородаев И.А., Шемахин А.Ю., 2013

Физическая модель

Распыление наночастицы серебра в низкотемпературной плазме может происходить по двум основным механизмам [3]. Согласно первому, распыленные атомы возникают в результате сильного локального разогрева поверхности в месте падения бомбардирующей частицы. Второй механизм предполагает передачу энергии и импульса бомбардирующей частицы атомам материала, что влечет каскады упругих столкновений смещенных из равновесных состояний атомов.

Наночастица диаметром 6-9 нм, согласно оценкам, приведенным в работе [4], содержит $N_a = (5-22) \cdot 10^3$ атомов. Если она заряжена положительно, то на ее поверхности может находиться до $N_i = (2-3) \cdot 10^3$ ионов серебра. Электроны плазмы, ускоряясь в электрическом поле, создаваемом наночастицей, приобретает энергию еф, где ф – потенциал наночастицы. Эта энергия способствует увеличению внутренней энергии частицы. Попав на поверхность, электрон рекомбинирует с ионом Ag⁺; при этом выделяется энергия 7,5 эВ. Это также увеличивает внутреннюю энергию частицы, в результате чего она нагревается до температуры плавления. Затем поступающая энергия затрачивается на последующее плавление, причем в это время температура частицы стабилизируется. Далее, после завершения процесса плавления, нагрев продолжается до температуры испарения T

На эмиссию одного атома серебра с поверхности наночастицы серебра затрачивается энергия, равная 2,65 эВ. Таким образом, результатом взаимодействия электронов плазмы с положительно заряженной наночастицей серебра после достижения ею температуры T_{vap} может происходить испарение до 3 атомов или ионов серебра на один электрон. В результате, наночастица может распылиться полностью или частично.

Если частица, поступившая в плазму, либо не заряжена, либо распылена не полностью, то она, как и всякое другое тело в плазме инертного газа, заряжается отрицательно и приобретает плавающий потенциал:

$$\label{eq:phi_s} \varphi_{s} = -\frac{kT_{e}}{2e}\ln\!\left(\!\frac{M}{\gamma m_{e}}\!\right)^{\!\!1/2},$$

где k – постоянная Больцмана, T_e – электронная температура, M – масса иона, m_e – масса электрона, e – элементарный заряд, $\gamma \approx 2,3$ – постоянная [5].

Энергия ионов в индукционной ВЧ-плазме в зоне плазменного сгустка не превышает 0,1–0,3 эВ. При ускорении в поле заряженной наночастицы ионы приобретают дополнительную энергию величиной до 7,76 эВ, что увеличивает общую энергию взаимодействия. Энергия рекомбинации иона аргона Ar⁺ составляет 15,76 эВ. При столкновении иона Ar⁺ с наночастицей возможна эмиссия электронов, на что затрачивается 4,3 эВ. Таким образом, суммарная энергия взаимодействия иона Ar⁺ с наночастицей серебра составляет 11–13 эВ. В этом случае может испариться до 4–5 атомов Ag на один ион Ar⁺. Общее распыление идет по обоим вышеописанным механизмам (электронным и ионным).

Таким образом, в соответствии с принятой физической моделью для описания процесса распыления наночастицы серебра в потоке индукционной ВЧ-плазмы пониженного давления необходимо рассмотрение динамики процесса изменения заряда наночастицы с учетом изменения ее температуры.

Математическая модель и результаты расчета

Рассмотрим элементарную кубическую ячейку с длиной ребра $n_e^{-1/3}$, содержащую одну заряженную наночастицу серебра, в области перед плазменным сгустком в диапазоне газовых температур 500–1500 К и концентраций электронов $10^{15}-10^{18}$ м⁻³. Допустим, что наночастицы движутся со скоростью плазмообразующего газа, так что в системе координат, связанной с наночастицей, ионы неподвижны, а электроны колеблются синфазно с изменением напряженности электрического поля. Локальную систему координат, связанную с наночастицей, ориентируем так, чтобы ось *Ох* была коллинеарна вектору напряженности электрического ВЧ-поля E_{re} .

Для положительно заряженной наночастицы электронная бомбардировка моделировалась с помощью статистического эксперимента, в котором функция распределения электронов по энергиям полагалась максвелловской со средней энергией 1 эВ. Координаты электронов, влетающих в элементарную ячейку, выбирались случайным образом.

Электроны и ионы плазмы попадают на поверхность наночастицы в результате движения в ее электрическом поле, которое описывается следующими уравнениями:

$$\begin{cases} \frac{d\mathbf{v}_{e,i}}{dt} = \frac{e\mathbf{E}}{m_{e,i}}, t > 0; \\ \frac{d\mathbf{r}_{e,i}}{dt} = \mathbf{v}_{e,i}, t > 0, \end{cases}$$
(1)

где $m_{e,i}$ – масса электрона и иона, $\mathbf{v}_{e,i}$ – скорость электрона или иона, $\mathbf{r}_{e,i}$ – радиус-вектор положения заряженной частицы, $\mathbf{E} = \mathbf{E}_p + \mathbf{E}_{rf}$ – вектор напряженности полного электрического поля в окрестности наночастицы, \mathbf{E}_{rf} – напряженность высокочастотного электрического поля, \mathbf{E}_p – напряженность потенциального электрического поля, создаваемого зарядом наночастицы.

Система (1) решается при начальных условиях:

$$\begin{aligned} \mathbf{v}_{e,i}\left(0\right) &= \mathbf{v}_{e,i0}, \\ \mathbf{r}_{e,i}\left(0\right) &= \mathbf{r}_{e,i0}. \end{aligned}$$

где **v**_{*e,i0*} – случайная величина, соответствующая максвелловским функциям распределения по скоростям электронов и ионов, соответственно; **r**_{*e,i0*} – случайная координата входа электрона или иона в ячейку. Траектория электрона, попадающего на наночастицу, приведена на рис. 1.

Рис. 1. Траектория электрона в элементарной ячейке ($n_e = 10^{-15} \text{ m}^3$, $T_e = 1 \text{ эВ}$, $Q = 2,4 \cdot 10^3 \cdot e$, d = 6 нм).

Для определения числа столкновений электронов с заряженной наночастицей серебра целесообразно воспользоваться адекватной оценкой прицельного радиуса R_a , т.е. радиуса сферы, на поверхности которой кинетическая энергия электрона равна энергии потенциального взаимодействия с заряженной наночастицей. В этом случае прицельный радиус находится из соотношения: $\varepsilon_{e,k} = \frac{m_e \cdot v^2}{2} = \frac{1}{4\pi\varepsilon_0} \frac{|e \cdot q|}{R_a}$, (2) где $\varepsilon_{e,k} = -\kappa$ кинетическая энергия электрона, $m \to \infty$

где $\varepsilon_{e,k}$ – кинетическая энергия электрона, m_e – масса электрона, v – его скорость, q – заряд на-

ночастицы, *е* – заряд электрона, ε_0 – электрическая постоянная. Из выражения (2) следует, что прицельный радиус зависит от заряда частицы линейно.

Проекция сферы радиусом $R_a(q, \varepsilon_{e,k})$ на грань ячейки определяет круговую область, при прохождении через которую, электрон, входящий в элементарную ячейку, однозначно попадает на поверхность наночастицы. Вероятность попадания на наночастицу электрона, влетевшего в ячейку, определяется отношением площади круговой области к площади грани ячейки.

Предварительные оценки показали, что для начала процесса испарения необходимо поглощение положительно заряженной наночастицей 300–350 электронов, причем диаметр нейтрального остатка положительно заряженной частицы серебра диаметром 6 – 9 нм составляет 5–7 нм [4].

Любое тело в плазме нейтрального газа заряжается отрицательно, поэтому после полной нейтрализации наночастицы серебра ее остаток приобретает плавающий потенциал. Это имеет место и для изначально электронейтральной наночастицы. Отрицательно заряженная частица распыляется в результате взаимодействия с положительно заряженными ионами аргона.

Для количественного описания зарядки наночастиц в газоразрядной плазме, как правило, используются модели, заимствованные из теории электрических зондов в плазме [6, 7]. В рамках данной задачи выполнены условия применимости приближения ограниченного орбитального движения (orbit motion limited (OML) theory), т.е. $a \ll \lambda_D \ll l_e$, а также условие отсутствия взаимовлияния наночастиц друг на друга. Здесь a – радиус наночастицы, l_e – длина свободного пробега электрона.

Можно считать, что электроны поглощаются только в том случае, если их траектории пересекают поверхность наночастицы или касаются ее. Тогда сечение поглощения, зависящее от скорости электрона, имеет вид [7]:

$$\sigma_{\rm e}(v) = \begin{cases} \pi a^2 \left(1 + \frac{2e\varphi_{\rm s}}{m_e v^2} \right), & \frac{2e\varphi_{\rm s}}{m_e v^2} > -1; \\ 0, & \frac{2e\varphi_{\rm s}}{m_e v^2} < -1, \end{cases}$$

где m_e - масса электрона, e – заряд электрона, v – скорость электрона относительно наночастицы, φ_s – потенциал поверхности наночастицы отно-

сительно плазмы.

Когда наночастица приобретает достаточно большой отрицательный заряд, с ней начинают взаимодействовать ионы аргона. В отличие от электронов, в рассматриваемой модели в локальной системе координат, связанной с наночастицей, ионы до начала взаимодействия неподвижны, поэтому приближение OML не применимо.

Процесс взаимодействия положительных ионов аргона с отрицательным остатком наночастицы начинается при условии равенства его потенциальной энергии в электростатическом поле наночастицы и энергии хаотического движения:

$$W = \frac{|eq|}{4\pi\varepsilon_0 R} = \frac{3}{2}kT,$$

где R – расстояние между наночастицей и ионом аргона. Отсюда радиус захвата ионов наночастицей: $R_{cl} = |eq|/6kT\pi\varepsilon_0$

Результаты расчетов показали, что заряд и радиус уменьшаются неравномерно (рис. 2). За время ~10⁻⁵ с наночастица теряет большую часть заряда и при этом радиус уменьшается с 6 до 5 нм. Полная нейтрализация происходит за время ~5·10⁻⁴ с. После этого нейтрализованный остаток за время ~10⁻⁶ с приобретает отрицательный заряд $\approx 40 \ e$. Затем начинается взаимодействие наночастицы с ионами плазмообразующего газа.

Рис. 2. Зависимость радиуса (а) и заряда (б) положительно заряженной наночастицы от времени нахождения в плазме.

В процессе ионной бомбардировки отрицательно заряженной наночастицы серебра ее отрицательный заряд постоянно восполняется (рис. 2, δ), интенсивность ионной бомбардировки (в отличие от электронной бомбардировки положительно заряженной частицы) остается неизменной. При этом радиус падает практически по линейному закону (рис. 2, *a*). При небольшом количестве 20–30 атомов в остатке на графике прослеживается ступенчатый характер изменения радиуса. Полное время положительно заряженной наночастицы распыления составляет ~ 8·10⁻⁴ с.

На рис. 3 показаны изменения со временем радиуса и заряда наночастицы, которая при выходе из барботера была электронейтральной. Видно, что характер взаимодействия нейтральной частицы такой же, как и нейтрального остатка положительно заряженной частицы (рис. 2). Полное время распыления составляет ~7·10⁻⁵ с.

Рис. 3. Зависимость радиуса (а) и заряда (б) нейтральной наночастицы от времени нахождения в плазме.

Длина транспортного участка потока ВЧплазмы пониженного давления составляет ~ 0,5 м, скорость плазменного потока 200–500 м/с. Следовательно, полное время пролета наночастицы через плазму составляет ~ 10⁻³ с, и поэтому наночастицы Ag в индукционной ВЧ-плазме пониженного давления распыляются полностью, т.е. на поверхность образца поступает поток ионов и атомов серебра.

Заключение

В работе разработаны физическая и математическая модели взаимодействия наночастиц серебра с ВЧ-плазмой пониженного давления. Результаты расчетов показали, что, если в плазму поступает положительно заряженная наночастица, то процесс ее распыления происходит неравно-мерно. За время ~ 10^{-5} с радиус наночастицы уменьшается на ≈ 15 %, заряд – на ≈ 90 %. Затем в течение $\approx 4 \cdot 10^{-4}$ с радиус и заряд уменьшаются незначительно, а после нейтрализации остаток наночастицы распыляется практически равномерно за ~ 10^{-4} с.

Если в плазму поступает нейтральная наночастица, то ее ралиус уменьшается практически равномерно, а полное распыление достигается за ~ 6·10⁻⁵ с. Поэтому на поверхность образца поступает атомарно-ионный поток серебра, и напыление происходит в соответствии с механизмом взаимодействия неравновесной плазмы с материалами [3].

Работа выполнена при финансовой поддержке РФФИ, гранты 10-01-00728а, 11-01-00864а, 12-01-31458 мол_а, 12-01-00955-а, Минобрнауки РФ по ГК № 14.132.21.1420, соглашение № 14.В37.21.1948, компании ВР Россия, дог. № С49-12 от 13.01.2012.

Литература

1. Абдуллин И.Ш. и др. // Вест. Казан. технол. унта, 2009. № 4. С. 117

2. Панкова Е.А. и др. // Вест. Казан. технол. унта, 2009. № 4. С. 206

3. Абдуллин И.Ш., Желтухин В.С., Кашапов Н.Ф. Высокочастотная плазменно-струйная обработка мате-риалов при пониженных давлениях. Теория и практика применения. - Казань: Изд-во Казан. ун-та, 2000.

4. Бородаев И.А., Желтухин В.С. // Тез. докл. XXXIX Междунар. (Звенигородской) конф. по физ. плазмы и УТС, М., 2012. С. 156.

5. *Ю. П. Райзер.* Физика газового разряда.- М.: Наука, - 1987

6. *Митчнер М., Кругер Ч.* Частично ионизованные газы. - М.: Мир, 1976.

7. *Фортов В.Е. и др. //* Успехи физ. наук. 2004. Т. 175. № 5. С. 495.

Simulation of interaction between low pressure inductive coupled radio frequency plasmas and argentum nanoparticles

I.Sh. Abdullin¹, V.S. Zheltukhin², I.A. Borodaev², and A.Yu. Shemakhin²

¹Kazan National Research Technological University 15 K. Marx str., Kazan, 420068, Russia Phone: +7 843 231 4109. E-mail: abdullin_i@kstu.ru

²Kazan (At-Volga) Federal University.
18 Kremlevskaya str., Kazan, 420008, Russia
Phone: +7 843 233 7800. E-mail: vzheltukhin@gmail.com

Physical and mathematical models of a process of interaction between low pressure inductive coupled RF plasmas and argentum nanoparticles are constructed. A dynamics of changing of charge and radius of nanoparticles is showed. It is established that Ag nanoparticles in low pressure RF plasmas are sprayed completely, and on a sample surface the atomic and ion stream arrives.

PACS: 52.65.Yy, 52.80.Pi

Keywords: mathematical modeling, nanoparticles, argentums, plasma interaction, spraying, radiofrequency discharges, low pressure.

Bibliography – 7 references